snorer.Mandelstam

class snorer.Mandelstam(T2,m1,m2,psi)

Superclass: snorer.Kinematics

This class constructs the associated Mandelstam variables \(s\), \(t\) and \(u\) associated with the scattering process depicted in Fig. 1 in 2-2 elastic scattering.

Parameters:

T2 : array_like
    Kinetic energy \(T_2\) received by the particle 2, MeV

m1 : array_like
    Mass of particle 1 (incident) \(m_1\), MeV

m2 : array_like
    Mass of particle 2 (target) \(m_2\), MeV

psi : array_like
    Lab frame scattering angle \(\psi\), rad

Attributes:

s : scalar/ndarray
    The \(s\)-channel in this scattering process, MeV2

t : scalar/ndarray
    The \(t\)-channel in this scattering process, MeV2

u : scalar/ndarray
    The \(u\)-channel in this scattering process, MeV2

T1 : scalar/ndarray
    The required kinetic energy \(T_1\) of particle 1, MeV

dT1 : scalar/ndarray
    The Jacobian \(dT_1/dT_2\), dimensionless

x : scalar/ndarray
    \(x:=\cos\psi \in [1,-1]\)

sanity : bool/ndarray
    Are the parameters physically plausible? True for plausible and False for physically impossible.

dLips : scalar/ndarray
    Value for differential Lorentz invariant phase space

Notes

Given \(T_1\) is obtained from its superclass snorer.Kinematics, we can evaluate all Mandelstam variables easily. Thus,

\[ \begin{align*} s &= (p_1+p_2)^2 = m_1^2+m_2^2 + 2 E_1 m_1 \\ &= m_1^2+m_2^2 + 2(T_1+m_1)m_2 \end{align*} \]

for \(s\)-channel, and

\[ \begin{align*} t &= (p_2^\prime - p_2)^2 = 2m_2^2 - 2E_2 E_2^\prime \\ &= 2m_2^2 - 2(T_2+m_2)m_2. \end{align*} \]

For \(u\)-channel, we use the identity $$ s+t+u = \sum_i m_i^2 = 2(m_1^2+m_2^2) $$ where \(i\) indicates all particle masses before and after the reaction.

References

  1. M. Peskin and D. Schroeder, An Introduction To Quantum Field Theory, Westview (1995)